Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Environ Manage ; 345: 118557, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37429091

ABSTRACT

Droughts and floods are weather-related hazards affecting cities in all climate zones and causing human deaths and material losses on all inhabited continents. The aim of this article is to review, analyse and discuss in detail the problems faced by urban ecosystems due to water surplus and scarcity, as well as the need of adaptation to climate change taking into account the legislation, current challenges and knowledge gaps. The literature review indicated that urban floods are much more recognised than urban droughts. Amongst floods, flash floods are currently the most challenging, which by their nature are difficult to monitor. Research and adaptation measures related to water-released hazards use cutting-edge technologies for risk assessment, decision support systems, or early warning systems, among others, but in all areas knowledge gaps for urban droughts are evident. Increasing urban retention and introducing Low Impact Development and Nature-based Solutions is a remedy for both droughts and floods in cities. There is the need to integrate flood and drought disaster risk reduction strategies and creating a holistic approach.


Subject(s)
Droughts , Floods , Humans , Cities , Water , Ecosystem , Climate Change
2.
Materials (Basel) ; 16(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36837367

ABSTRACT

Soils enriched with biochar are recommended as a cultivation grounds, especially in case they contain significant amount of sand. However, the interactions between biochar and plants, as well as the influence of the biochar on water retention, cultivation and air properties of soils, are still not obvious. The present study aimed to determine the impact of various biochar doses on soils used for soya cultivation, in comparison to soils maintained as black fallow soil, on their water retention and productivity, for the period of two years. Sunflower husk biochar (BC1) and biochar of leafy trees (BC2), in doses of 0, 40, 60, 80 t·ha-1, were used for field experiments. The water retention was investigated with porous boards in pressure chambers by a drying method. No differences in the hydrological properties of the soils that were differently managed (black fallow soil, crop) were observed following biochar application. Addition of BC1, in the amounts of 40, 60, and 80 t·ha-1, caused an increase in the plant available water capacity (AWC) by 15.3%, 18.7%, and 13.3%, respectively, whereas the field capacity (FC) increased by 7.4%, 9.4%, and 8.6% for soils without biochar. Application of BC2 analogously resulted in higher AWC, by 8.97, 17.2%, and 33.1%, respectively, and higher FC by 3.75, 7.5%, and 18.3%, respectively. Increasing the doses of BC1 and BC2, both on black fallow soils and soils enriched with soya, caused a rise in total porosity (TP) and drainage porosity (DP), and a decrease in soil bulk density (SBD). Biochar with a higher total area and higher porosity (BC1) applied to soils with soya cultivation resulted in lower reductions in AW and FC than BC2 in the second year of investigation.

6.
Entropy (Basel) ; 23(8)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34441075

ABSTRACT

Wind erosion is the leading cause of soil degradation and air pollution in many regions of the world. As wind erosion is controlled by climatic factors, research on this phenomenon is urgently needed in soil and land management in order to better adapt to climate change. In this paper, the impact of wind erosion on the soil surface in relation to particle size distribution was investigated. Changes in percentage of sand, silt and clay fractions based on historical KPP data (1961-1970), LUCAS data base (2009), and field measurements (2016) were analysed in five cadastral areas impacted by wind erosion (Záhorie Lowlands, Slovakia). With the use of GIS tools, models of spatial distribution of sand, silt, clay and erodible fraction (EF) content were developed based on those measurements. Our findings proved that soil texture change driven by wind erosion could happen relatively quickly, and a significant proportion of soil fine particles may be carried away within a few years. The results indicate that the soil surface became much rougher over the period of more than 50 years, but also that the accumulation of fraction of the silt particles occurred in most of the areas affected by the erosive effect.

7.
R Soc Open Sci ; 8(4): 202305, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33996128

ABSTRACT

Current carbon pricing and trading mechanisms, despite their efficacy in reducing GHG emissions from industry, will not be sufficient to achieve Net Zero targets. Current mechanisms that redress emissions are largely economic disincentives, in effect financial penalties for emitters. In order to attain Net Zero futures, financial incentives for activities that sequester carbon from the atmosphere are needed. Herein, we present the environmental and economic co-benefits of soil re-carbonization and justify support for soil carbon remuneration. With increasing momentum to develop green economies, and projected increases in carbon price, growth in the global carbon market is inevitable. The establishment of a soil-based carbon economy, within this emerging financial space, has the potential to deliver a paradigm shift that will accelerate climate change mitigation, and concurrently realize net gains for soil health and the delivery of soil ecosystem services. Pivotal to the emergence of a global soil carbon economy will be a consensus on certification instruments used for long-term soil carbon storage, and the development of robust institutional agreements and processes to facilitate soil carbon trading.

8.
R Soc Open Sci ; 8(3): 201584, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33959328

ABSTRACT

Soil ecosystem service (SES) approaches evidence the importance of soil for human well-being, contribute to improving dialogue between science and decision-making and encourage the translation of scientific results into public policies. Herein, through systematic review, we assess the state of the art of SES approaches in tropical regions. Through this review, 41 publications were identified; while most of these studies considered SES, a lack of a consistent framework to define SES was apparent. Most studies measured soil natural capital and processes, while only three studies undertook monetary valuation. Although the number of publications increased (from 1 to 41), between 2001 and 2019, the total number of publications for tropical regions is still small. Countries with the largest number of publications were Brazil (n = 8), Colombia (n = 6) and Mexico (n = 4). This observation emphasizes an important knowledge gap pertaining to SES approaches and their link to tropical regions. With global momentum behind SES approaches, there is an opportunity to integrate SES approaches into policy and practice in tropical regions. The use of SES evaluation tools in tropical regions could transform how land use decisions are informed, mitigating soil degradation and protecting the ecosystems that soil underpins.

9.
Nature ; 586(7831): 724-729, 2020 10.
Article in English | MEDLINE | ID: mdl-33057198

ABSTRACT

Extensive ecosystem restoration is increasingly seen as being central to conserving biodiversity1 and stabilizing the climate of the Earth2. Although ambitious national and global targets have been set, global priority areas that account for spatial variation in benefits and costs have yet to be identified. Here we develop and apply a multicriteria optimization approach that identifies priority areas for restoration across all terrestrial biomes, and estimates their benefits and costs. We find that restoring 15% of converted lands in priority areas could avoid 60% of expected extinctions while sequestering 299 gigatonnes of CO2-30% of the total CO2 increase in the atmosphere since the Industrial Revolution. The inclusion of several biomes is key to achieving multiple benefits. Cost effectiveness can increase up to 13-fold when spatial allocation is optimized using our multicriteria approach, which highlights the importance of spatial planning. Our results confirm the vast potential contributions of restoration to addressing global challenges, while underscoring the necessity of pursuing these goals synergistically.


Subject(s)
Ecosystem , Environmental Restoration and Remediation/trends , International Cooperation , Animals , Biodiversity , Conservation of Natural Resources/economics , Cost-Benefit Analysis , Environmental Restoration and Remediation/economics , Geographic Mapping , Global Warming/economics , Global Warming/prevention & control
11.
Sci Rep ; 10(1): 1946, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32029788

ABSTRACT

Brazil is a megadiversity country with more tropical forest than any other, and is a leading agricultural producer. The technical potential to reconcile these roles by concentrating agriculture on existing farmland and sparing land for nature is well-established, but the spatial overlap of this potential with conservation priorities and institutional constraints remains poorly understood. We mapped conservation priorities, food production potential and socio-economic variables likely to influence the success of land sparing. Pasture occupies 70% of agricultural land but contributes ≤11% of the domestic food supply. Increasing yields on pasture would add little to Brazil's food supply but - if combined with concerted conservation and restoration policies - provides the greatest opportunities for reducing land demand. Our study illustrates a method for identifying municipalities where land-sparing policies are most likely to succeed, and those where further effort is needed to overcome constraints such as land tenure insecurity, lack of access to technical advice, labour constraints, and non-compliance with environmental law.

12.
Sci Rep ; 9(1): 11993, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31427607

ABSTRACT

Most deforested lands in Brazil are occupied by low-productivity cattle ranching. Brazil is the second biggest meat producer worldwide and is projected to increase its agricultural output more than any other country. Biochar has been shown to improve soil properties and agricultural productivity when added to degraded soils, but these effects are context-dependent. The impact of biochar, fertilizer and inoculant on the productivity of forage grasses in Brazil (Brachiaria spp. and Panicum spp.) was investigated from environmental and socio-economic perspectives. We showed a 27% average increase in Brachiaria production over two years but no significant effects of amendment on Panicum yield. Biochar addition also increased the contents of macronutrients, soil pH and CEC. Each hectare amended with biochar saved 91 tonnes of CO2eq through land sparing effect, 13 tonnes of CO2eq sequestered in the soil, equating to U$455 in carbon payments. The costs of biochar production for smallholder farmers, mostly because of labour cost, outweighed the potential benefits of its use. Biochar is 617% more expensive than common fertilizers. Biochar could improve productivity of degraded pasturelands in Brazil if investments in efficient biochar production techniques are used and biochar is subsidized by low emission incentive schemes.


Subject(s)
Charcoal , Environment , Soil/chemistry , Agriculture , Algorithms , Biomass , Brazil , Carbon Cycle , Cost-Benefit Analysis , Ecosystem , Forests , Models, Theoretical
13.
Environ Sci Pollut Res Int ; 26(18): 18230-18239, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31041701

ABSTRACT

Biochar as a carbon-rich highly porous substance has been proposed for use in agriculture and horticulture as a soil amendment. One of the main concerns of this application of biochar is its potential contamination with heavy metals (HMs) and polycyclic aromatic hydrocarbons. The aim of this research was to access the environmental risk of biochar used as a soil amendment on soil mesofauna (mites and springtails). We conducted both field and laboratory experiments with the use of wood-chip biochar from low-temperature (300 °C) flash pyrolysis. Biochar was free from polycyclic aromatic hydrocarbons (PAH), and the concentration of all tested toxic compounds was very low or even under the level of detection. Both the results of field and laboratory studies show no toxic effects on soil mesofauna. In the field studies, the biochar application of 50 t/ha in maize and oilseed rape crops significantly increased the mean number of mesofauna. This change probably resulted from improved soil chemical properties (in particular organic carbon content and cation exchange capacity) upon biochar addition. The results of the avoidance test with the use of springtail species Folsomia candida showed the possible short-term toxicity risk from a dose of 5%. The results of the reproduction test indicate the negative response of F. candida from the rate of 25% (higher than the field dose, which corresponds to 10% in laboratory tests). The reason for the short-term toxicity might be the considerable increase in soil pH after biochar addition. To our knowledge, this is the first study that has looked so widely into the effect of biochar on soil mesofauna. We encourage further studies into the risk assessment of biochar on soil organisms in both a controlled laboratory environment and in the open field.


Subject(s)
Charcoal , Soil , Agriculture , Agrochemicals , Animals , Arthropods/drug effects , Cold Temperature , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Soil/chemistry , Soil/parasitology , Soil Pollutants/analysis , Temperature , Wood/chemistry
15.
Nat Ecol Evol ; 3(1): 62-70, 2019 01.
Article in English | MEDLINE | ID: mdl-30568285

ABSTRACT

International commitments for ecosystem restoration add up to one-quarter of the world's arable land. Fulfilling them would ease global challenges such as climate change and biodiversity decline but could displace food production and impose financial costs on farmers. Here, we present a restoration prioritization approach capable of revealing these synergies and trade-offs, incorporating ecological and economic efficiencies of scale and modelling specific policy options. Using an actual large-scale restoration target of the Atlantic Forest hotspot, we show that our approach can deliver an eightfold increase in cost-effectiveness for biodiversity conservation compared with a baseline of non-systematic restoration. A compromise solution avoids 26% of the biome's current extinction debt of 2,864 plant and animal species (an increase of 257% compared with the baseline). Moreover, this solution sequesters 1 billion tonnes of CO2-equivalent (a 105% increase) while reducing costs by US$28 billion (a 57% decrease). Seizing similar opportunities elsewhere would offer substantial contributions to some of the greatest challenges for humankind.


Subject(s)
Conservation of Natural Resources/economics , Ecosystem , Brazil , Carbon Sequestration , Cost-Benefit Analysis
16.
Nat Sustain ; 1(9): 477-485, 2018 Sep 14.
Article in English | MEDLINE | ID: mdl-30450426

ABSTRACT

How we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data suggest impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high levels of externalities such as greenhouse gas (GHG) emissions and nutrient losses. However, such metrics underestimate the overall impacts of lower-yield systems, so here we develop a framework that instead compares externality and land costs per unit production. Applying this to diverse datasets describing the externalities of four major farm sectors reveals that, rather than involving trade-offs, the externality and land costs of alternative production systems can co-vary positively: per unit production, land-efficient systems often produce lower externalities. For GHG emissions these associations become more strongly positive once forgone sequestration is included. Our conclusions are limited: remarkably few studies report externalities alongside yields; many important externalities and farming systems are inadequately measured; and realising the environmental benefits of high-yield systems typically requires additional measures to limit farmland expansion. Yet our results nevertheless suggest that trade-offs among key cost metrics are not as ubiquitous as sometimes perceived.

17.
Sci Adv ; 3(11): e1701345, 2017 11.
Article in English | MEDLINE | ID: mdl-29134195

ABSTRACT

Is active restoration the best approach to achieve ecological restoration success (the return to a reference condition, that is, old-growth forest) when compared to natural regeneration in tropical forests? Our meta-analysis of 133 studies demonstrated that natural regeneration surpasses active restoration in achieving tropical forest restoration success for all three biodiversity groups (plants, birds, and invertebrates) and five measures of vegetation structure (cover, density, litter, biomass, and height) tested. Restoration success for biodiversity and vegetation structure was 34 to 56% and 19 to 56% higher in natural regeneration than in active restoration systems, respectively, after controlling for key biotic and abiotic factors (forest cover, precipitation, time elapsed since restoration started, and past disturbance). Biodiversity responses were based primarily on ecological metrics of abundance and species richness (74%), both of which take far less time to achieve restoration success than similarity and composition. This finding challenges the widely held notion that natural forest regeneration has limited conservation value and that active restoration should be the default ecological restoration strategy. The proposition that active restoration achieves greater restoration success than natural regeneration may have arisen because previous comparisons lacked controls for biotic and abiotic factors; we also did not find any difference between active restoration and natural regeneration outcomes for vegetation structure when we did not control for these factors. Future policy priorities should align the identified patterns of biophysical and ecological conditions where each or both restoration approaches are more successful, cost-effective, and compatible with socioeconomic incentives for tropical forest restoration.


Subject(s)
Environmental Restoration and Remediation , Forests , Animals , Biodiversity , Meta-Analysis as Topic , Plants/metabolism
20.
Environ Int ; 36(4): 383-389, 2010 May.
Article in English | MEDLINE | ID: mdl-20303177

ABSTRACT

Information on contaminant bioaccessibility has been recognized by researchers, legislators and regulators as a decision-support tool for contaminated land assessment and has been subject to interest and discussion at both national and international levels. A sustainable, proportionate and risk-based approach to contaminated land management has been adopted by contaminated land regimes throughout the world. While this approach guides national and international priorities, its practical implementation in many countries, including the United Kingdom, is reliant upon local authorities. Here, we present an investigation into the views of local authorities in England and Wales regarding the practical application of bioaccessibility and constraints associated with its implementation. The research involved an online survey followed by semi-structured interviews with selected respondents. A majority of survey respondents (70%) perceived bioaccessibility to be a useful tool that facilitates contaminated land management. However, 76% of participants indicated a need for more information regarding bioaccessibility as well as emphasising a need for more research into polycyclic aromatic hydrocarbons. Lack of statutory guidance was indicated by 78% of respondents as the main factor hampering the use of bioaccessibility data in regulatory decision-making. Divergence of policy-maker and local regulator perceptions of bioaccessibility was also indicated by the respondents. This research brings the voice of front-line regulators for contaminated land into the on-going discussion between policy-makers and scientists on the uses of bioaccessibility. This study concludes by proposing action priorities both for the research community and for policy-makers, which are transferable to risk-based regimes elsewhere.


Subject(s)
Decision Making , Environmental Pollution , Hazardous Substances , Polycyclic Aromatic Hydrocarbons/toxicity , Risk Assessment/methods , Soil Pollutants/toxicity , Cross-Sectional Studies , England , Humans , Internet , Surveys and Questionnaires , Wales
SELECTION OF CITATIONS
SEARCH DETAIL
...